Tensorflow 多模型加载
g1 = tf.Graph() # 加载到Session 1的graph
g2 = tf.Graph() # 加载到Session 2的graph

sess1 = tf.Session(graph=g1) # Session1
sess2 = tf.Session(graph=g2) # Session2

# 加载第一个模型
with sess1.as_default(): 
    with g1.as_default():
        tf.global_variables_initializer().run()
        model_saver = tf.train.Saver(tf.global_variables())
        model_ckpt = tf.train.get_checkpoint_state(model1/save/path)
        model_saver.restore(sess, model_ckpt.model_checkpoint_path)
# 加载第二个模型
with sess2.as_default():  # 1
    with g2.as_default():  
        tf.global_variables_initializer().run()
        model_saver = tf.train.Saver(tf.global_variables())
        model_ckpt = tf.train.get_checkpoint_state(model2/save/path)
        model_saver.restore(sess, model_ckpt.model_checkpoint_path)

...

# 使用的时候
with sess1.as_default():
    with sess1.graph.as_default():  # 2
        ...

with sess2.as_default():
    with sess2.graph.as_default():
        ...

# 关闭sess
sess1.close()
sess2.close()

如果你觉得这篇文章对你有帮助,不妨请我喝杯咖啡,鼓励我创造更多!